
Large Language Models
James Christopher Bare
AIML420
18-June-2023

Introduction
Large language models (LLMs) have exploded in the past year, reaching a level
of fluency that seemed far off a short time ago. The most advanced models can
write code, summarize and translate documents, and pass legal and medical
exams. They also “hallucinate”, convincingly fabricating untrue but seemingly
factual information. They threaten to empower scammers, turbocharge disin-
formation, and eliminate jobs. Some worry about an unstoppable arms race
toward ever more powerful AIs that will come to pose an existential risk to
humanity.

The key factor that enables the surprising talents of the latest generation of
models is massive scale. Training runs consume tens of millions of dollars in
compute time and leverage enormous datasets. But the resulting pretrained
models learn generalizable capabilities that allow them to perform a wide variety
of tasks.

The advances in linguistic proficiency are impressive, but are at risk of being
overshadowed by big questions about the effects these models will have on the
economy and society. The largest models have an unnerving level of understand-
ing and show signs of reasoning. In training machines to use language, what
else has come along for the ride?

How do LLMs work?
What is a language model?

To begin to understand how LLMs work, let’s start by defining the language
modeling task. A language model learns a probability distribution over strings
in a language - sequences of tokens, where tokens can be words, parts of words,
punctuation, or digits. “Have a nice day!” is a fairly likely bit of English
while ungrammatical nonsense like, “Nice a verisimilitude have” is improbable.
Large language models train on the task of predicting the next token given some
context, in other words, playing fill in the blank.

The model performs next token prediction by sampling from the probability
distribution learned during training conditioned on the prompt and the sequence
of previously generated tokens. A pretrained language model 𝑝𝜃 with parameters
𝜃 assigns a probability to a sequence of tokens 𝑥 as the product of conditional
probabilities of each token:

1



𝑝𝜃(𝑥) =
𝑛

∏
𝑖=1

𝑝𝜃(𝑥[𝑖]|𝑥[1 … 𝑖]])

Attention

Attention helps untangle context dependence in human language. Words have
different meanings or “senses” depending on surrounding words. Correct gram-
mar depends on the relations of pronouns and their referents and verb conjuga-
tion to reflect tense, plurality, or gender. Successful models of human language
need to consider related words that are sometimes far apart.

Attention gives a neural network the ability to learn these relations between
possibly distant words. The present wave of natural language processing (NLP)
kicked off with the paper Attention Is All You Need (Vaswani et al. 2017) which
introduced transformer architecture and a specific attention mechanism called
multi-headed self-attention.

Figure 1: Transformer architecture (Vaswani et al. 2017)

Like other sequence-to-sequence models, the original transformer architecture
has two parts, an encoder and a decoder, which can be used separately. Current

2



state-of-the-art models, like GPT, PaLM, and Llama are decoder-only autore-
gressive models meaning that each output token generated becomes part of the
context for the next.

Figure 2: Encoder-Decoder vs. Decoder-Only (Fu et al. 2023)

A key advantage of transformers over their predecessors - recurrent neural net-
works (RNNs) and long-short term memory (LSTM) networks - is that training
can be parallelized, enabling larger models trained on more documents.

Self-supervised pretraining and transfer learning

The scale of modern LLMs would be impossible if training was bottlenecked by
a limited supply of labeled data. Self-supervised pretraining solves that problem
(Brown et al. 2020). The beauty of next token prediction is that the correct
label is right there in the document - no human labeling required. Training data
can be drawn from giant crawls of the Internet and huge archives of books and
scientific papers. Self-supervised learning helps pretrained models scale. Their
generizability is an example of transfer learning (Ruder et al. 2019).

The success of transfer learning in computer vision stoked hopes that it could
also work for natural language. Transfer learning works because the layers of
a deep neural network learn to recognize increasingly complex feature represen-
tations. In vision models, initial layers react to low-level features like edges or
textures. Subsequent layers take the previous layer’s features and use them to
build higher-level features. For example, two edges coming to a point and a
furry texture might be recognized as a cat ear. These features can inform a
variety of downstream tasks, the property of generality. As in vision, language
has structure. Once learned, that structure can be applied to across tasks.

3



Stages of training

Modern LLMs are trained in stages. The vast majority of the training budget
goes to pretraining on next token completion on a massive corpus of unlabeled
text. This produces a base model. The next steps vary, but pretraining is
often followed by supervised fine tuning for a particular use case or application
domain, for example code generation or medical records. The datasets at this
stage are much smaller but are human labeled and hand-picked for quality and
relevance.

A model trained to complete documents doesn’t automatically answer questions,
follow instructions, or obey the rules of polite conversation. Adjusting the model
to follow these expectations is called alignment and can be accomplished by
reinforcement learning with human feedback (RLHF) (Ouyang et al. 2022).
In RLHF, the model generates multiple completions to the same prompt and
human reviewers rank those completions. A reward model is trained on the
rankings and then used to adjust the loss function, penalizing or rewarding
completions depending on how they rank. The weighted loss then gets back-
propagated as usual.

Figure 3: Stages of training in GPT (Karpathy 2023)

Returns of scale

Transformers and self-supervised learning, along with the engineering capacity
of cloud providers, have enabled models to scale by orders of magnitude in just a
few years. As of 2023, the most capable models for which numbers are publicly
available have tens or hundreds of billions of parameters. Unconfirmed rumor
puts GPT-4 at 1 trillion parameters, though OpenAI is not forthcoming with
exact details.

4



Model Year Parameters Training Tokens Context Window
T5 2019 11B 156B 512
GPT-3 2022 175B 300B 2k
GPT-4 2023 † 1T ? 8k/32k
PaLM 2022 540B 780B 2k
PaLM 2 2023 † 340B † 3.6T 8k
Chinchilla 2022 70B 1.4T 2k
LLaMa 2023 7-65B 1.0-1.4T 2k

(† unconfirmed)

A few years ago, with models on the order of 1 billion parameters, it wasn’t
obvious that further scale would keep producing gains. Many expected dimin-
ishing returns to set in. Text is, after all, a limited window through which to
observe the world. True understanding, it was thought, would remain out of
reach without “grounding” in physical reality. Instead, scale has continued to
pay off.

Within model families, performance scales smoothly through several orders of
magnitude in a power-law relationship with model size, data size, and compute
budget. For example, the GPT-3 paper (Brown et al. 2020) shows a plot of
validation loss versus compute, with elbow points neatly lining up. (Figure 4)

The Chinchilla paper (Hoffmann et al. 2022) reanalyzed the trade-off between
model size and training data, arguing that the optimal balance for a given
compute budget favored data more heavily than previously thought (Kaplan et
al. 2020). This paper contains a plot of loss curves on varying model sizes for
a fixed compute budget. The valley of lowest loss shows the optimal trade-off.
(Figure 5)

It’s worth noting that GPT-4 is multimodal in that it can take images and text
as input. After all, the amount of quality text is finite and the world is richer
when you have more senses. What might we expect from foundation models
that are equally facile with text, images, audio and video? (Yang et al. 2023)

Capabilities
As designed, LLMs have an impressive facility with language. Generating mean-
ingful and grammatical text is what they are trained for. As models grow in
complexity, they acquire surprising new skills, the so called ‘emergent abilities’
(Wei, Tay, et al. 2022). They hold large bodies of factual knowledge, hallucina-
tions notwithstanding. They can perform arithmetic, albeit clumsily and solve
mathematical word problems. They can answer questions with well-reasoned ar-
guments and self-correct when asked to reconsider. GPT-4 achieved impressive
results on a battery of academic and professional exams. (Figure 6) (OpenAI
2023)

5



Figure 4: Training curves for GPT-3 models of different sizes (Brown et al.
2020)

6



Figure 5: Training Compute-Optimal Large Language Models (Hoffmann et al.
2022)

7



Figure 6: GPT-4 Exam Results (OpenAI 2023)

8



Relevant to the future employment prospects of human programmers, LLMs
can generate decent code from natural language descriptions, complete with
comments and tests. Interestingly, they can answer questions about existing
code, showing conceptual understanding. They can also trace code execution
maintaining internal state to represent variable bindings and the state of a call
stack. (Bubeck et al. 2023) Todays budding programmers would be well advised
to practice working in tandem with LLMs so as to be complementary rather than
in direct competition with them.

Figure 7: GPT-4 aces a coding interview (Bubeck et al. 2023)

It’s not at all obvious that training on next token completion would lead to
models than can pass exams and coding interviews. It’s important to note that
even the top LLMs often get things wrong. Even so, in large language models,
quantity seems to have a quality all its own.

Ilya Sutskever, one of the creators of the GPT models, offers a simple but deep
explanation. (Sutskever and Huang 2023) “The better a neural network can
predict the next word in text, the better it understands it.” Sutskever suggests
considering the final page of a detective novel. After chapters filled with clues
and plot twists, the detective prepares to reveal the guilty party, saying, “That
person’s name is…” Predicting that next word requires reasoning well beyond
grammar and word frequency.

Augmented models

Where LLMs fall short, one strategy is to augment models with tools. Mi-
crosoft’s Bing AI is essentially GPT-4 augmented with search and retrieval.
Rather than recalling facts stored in model parameters, risking hallucination,
the model searches and summarizes the results for the user. LLMs have success-
fully learned to use calculators, command shells, and the Python interpreter.

Giving the model access to make API calls enables it to act in the world as an
agent. In future systems, one may imagine LLMs integrated into larger systems
executing complex workflows. At this point, doing so without close human
supervision seems unwise.

9



Prompt engineering

Users of generative models have developed libraries of prompting strategies that
elicit desired results, a trend that got started in diffusion models for image
generation like Midjourney and quickly migrated to LLMs.

The simplest of these strategies is to give examples. The terms “zero-shot”,
“one-shot”, and “few-shot” denote that the model is given no examples, one or
several examples in the prompt before posing the question. Examples improve
performance markedly which shows the model’s ability to learn inductively in-
context. (Brown et al. 2020)

Chain-of-thought is a prompting technique in which we ask the model to show
its reasoning step-by-step before giving an answer. Like few-shot prompting,
examples are given. But these examples include explicit descriptions of inter-
mediate steps toward a solution. The model imitates the methodical approach
producing big gains on word problems and common-sense reasoning. One ben-
efit is that more computation can be performed in proportion to the difficulty
of the problem. (Wei, Wang, et al. 2022)

Taking the idea a step further, Tree-of-thoughts (Yao et al. 2023) asks the model
to generate multiple candidate next steps given the current progress toward a
solution. At each step, the model evaluates the partial solution and continues
down promising paths or backs out of disappointing ones. Tree-of-thoughts is
essentially a heuristic search algorithm with the LLM playing the role of the
heuristic, which neatly links neural AI with techniques from classical AI.

Figure 8: Tree of Thoughts: Deliberate Problem Solving with Large Language
Models (Yao et al. 2023)

10



Sparks of AGI

One of the most provocative papers on LLMs comes from Microsoft Research
(MSR). “Sparks of Artificial General Intelligence” (Bubeck et al. 2023) is an
attempt qualitatively assess GPT-4’s intelligence using tools from psychology.

The MSR researchers probed GPT-4 along several dimensions, finding good per-
formance on reasoning, problem solving, abstract thinking, and comprehension
of complex ideas. They find planning to be an area of weakness and, while
the model is very able to learn in-context, there is no means to retain new
information for future use.

The paper comes to the relatively safe conclusion that GPT-4 is “a significant
step towards AGI” that cannot be dismissed as just statistical pattern matching.
Detractors note that as a major investor in OpenAI, the company behind GPT-4,
Microsoft is hardly impartial.

“The ‘Sparks of A.G.I.’ is an example of some of these big companies
co-opting the research paper format into P.R. pitches,” said Maarten
Sap, a researcher and professor at Carnegie Mellon University. (Metz
2023)

Limitations

Before LLMs are put to work in critical systems, there are some fairly serious
limitations that will have to be addressed. The most serious is hallucinations.
LLMs are prone to stating incorrect information with apparent confidence. Bet-
ter qualification of uncertainty is needed. Also, LLMs are sensitive to their
inputs. Rephrasing a question can lead to very different answers.

LLMs lack a means of integrating new information into an existing model. LLMs
make productive use of in-context learning, but when the session ends, that
knowledge is gone. There’s no means to move the context, the model’s short-
term memory, into the weights of the model. In some sense, LLMs are stuck in
time at the point where their training data cuts off.

Also, next-word generation imposes a sequential order that is impedes thinking
ahead or planning. Once a token has been sampled it becomes context for
following tokens. The model therefore becomes committed to a path which
might later turn out to lead nowhere. LLMs have no inner monologue. Instead,
tricks of prompting are required to elicit reason, revision, and critical thinking.
Interestingly, prompt hackery points out many of the shortcomings of present
LLMs, but might also point to fruitful directions for future development.

Applications for good and ill
LLMs will find many uses. GitHub’s Copilot writes solid code in a few seconds.
Use-cases in medicine are highly anticipated in an environment of barriers to ac-
cess and rampant provider burn-out. Lower stakes activities like billing, taking

11



notes, catching medical errors, and interacting with patients will come before
AIs are trusted to diagnose and prescribe. The educational potential of LLMs
is especially intriguing, with the model serving as a personalized tutor. It’s im-
portant to note that work is needed on safety and bias before LLMs are ready
to make decisions with serious consequences.

According to the leaked “We have no moat” memo (Anonymous 2023), open
source language models are rapidly catching up to the frontier. If this turns
out to be correct, access to powerful LLMs will be democratized and widely
available. But, also, AI without safeguards will be readily available to hostile
powers and bad actors.

Powerful tools falling into malicious hands is a more immediate problem than
the emergence of a rogue AI (Bengio 2023) in the mold of Skynet. Scammers
and political manipulators will be only too happy to use LLMs to further their
ends. AI generated junk content is already flooding the internet, invariably
peppered with ads. If the search engines can’t stay ahead, we can look forward
to quality content retreating behind paywalls or drowning in a sea of cheaply
generated clickbait.

The flip side is that the smartest models may be those trained on ever larger
and more power-hungry compute clusters and on the highest quality documents
and data, for which rights holders will want to extract payment. The cost-
performance curve for future models might bend sharply upward making access
prohibitive. In competitive environments like corporate strategy, financial mar-
kets, and geopolitics, winner-take-all dynamics might lead to further concentra-
tion of wealth and power.

How the distribution of empowering and disempowering effects plays out remains
to be seen, but there is reason for concern. Industrial automation has been
unkind to the blue-collar worker. Skilled professions form the bedrock of middle-
class wealth and power. If a large proportion of intellectual work can be done
by AI, that foundation is in trouble.

Conclusion
As a student, I can remember being told that any problem in computer science
could be solved by a sufficiently large lookup table. And also that, “All problems
in computer science can be solved by adding another level of indirection,” which
is sometimes jokingly called the Fundamental Theorem of Software Engineering.
In a way, large language models combine these principles. With billions of
parameters, an LLM is a very large lookup table. But, it’s doing the lookup
indirectly in magical high-dimensional latent space. The prompt is a path to
a region of a semantics-encoding manifold. The decoder returns a weighted
average of the training documents that shaped that part of the manifold - what
Ted Chiang called a “blurry JPEG of the web” (Chiang 2023).

Because the tools of reason are not many, maybe look-up in latent space is

12



enough to simulate reasoning. Or maybe it is reasoning. Are humans doing
anything different? One of the defining features of the history of neural AI
is that practice has always run ahead of theory. The debate about whether
artificial intelligence is real will likely continue long after the AIs have taken
over running the world.

Concepts like reason and intelligence remain stubbornly ill-defined. We’re left
with “I’ll know it when I see it”, but will we? Are we being fooled like Blake
Lemoine, the Google engineer who began to wonder whether that company’s
chatbot had achieved sentience? AI godfather Yann LeCun wrote a piece with
philosopher Jacob Browning (Browning and LeCun 2022) which contains the
memorable line, “deceiving humans isn’t very challenging; we see saints in toast.”
Perhaps we’ll know that AIs have finally surpassed us when they start asking
whether human intelligence is nothing more than a jumble of evolutionary hacks
and cheap parlor tricks.

References
Anonymous. 2023. “We Have No Moat.” https://www.semianalysis.com/p/

google-we-have-no-moat-and-neither.
Bengio, Yoshua. 2023. “How Rogue AIs May Arise.” https://yoshuabengio.org/

2023/05/22/how-rogue-ais-may-arise/.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language Models Are
Few-Shot Learners.” ArXiv abs/2005.14165.

Browning, Jacob, and Yann LeCun. 2022. “AI and the Limits of Language.”
Noema. https://www.noemamag.com/ai-and-the-limits-of-language/.

Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, John A. Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, et al. 2023. “Sparks of Artificial General
Intelligence: Early Experiments with GPT-4.” ArXiv abs/2303.12712.

Chiang, Ted. 2023. “ChatGPT Is a Blurry JPEG of the Web.” The New
Yorker. https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-
a-blurry-jpeg-of-the-web.

Fu, Zihao, Wai Lam, Qian Yu, Anthony Man-Cho So, Shengding Hu, Zhiyuan
Liu, and Nigel Collier. 2023. “Decoder-Only or Encoder-Decoder? In-
terpreting Language Model as a Regularized Encoder-Decoder.” ArXiv
abs/2304.04052.

Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, et al. 2022. “Training
Compute-Optimal Large Language Models.” ArXiv abs/2203.15556.

Kaplan, Jared, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei.
2020. “Scaling Laws for Neural Language Models.” ArXiv abs/2001.08361.

Karpathy, Andrej. 2023. “State of GPT.” https://www.youtube.com/watch?
v=bZQun8Y4L2A.

Metz, Cade. 2023. “Microsoft Says New a.i. Shows Signs of Human Reason-

13

https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
https://yoshuabengio.org/2023/05/22/how-rogue-ais-may-arise/
https://yoshuabengio.org/2023/05/22/how-rogue-ais-may-arise/
https://www.noemamag.com/ai-and-the-limits-of-language/
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://www.youtube.com/watch?v=bZQun8Y4L2A
https://www.youtube.com/watch?v=bZQun8Y4L2A


ing.” New York Times 2023/05/16/. https://www.nytimes.com/2023/05/
16/technology/microsoft-ai-human-reasoning.html.

OpenAI. 2023. “GPT-4 Technical Report.” ArXiv abs/2303.08774.
Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

Pamela Mishkin, Chong Zhang, et al. 2022. “Training Language Models
to Follow Instructions with Human Feedback.” ArXiv abs/2203.02155.

Ruder, Sebastian, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf.
2019. “Transfer Learning in Natural Language Processing.” In North Amer-
ican Chapter of the Association for Computational Linguistics.

Sutskever, Ilya, and Jensen Huang. 2023. “Fireside Chat with Ilya Sutskever
and Jensen Huang: AI Today and Vision of the Future.” https://youtu.be/
GI4Tpi48DlA?t=1024.

Vaswani, Ashish, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is
All You Need.” In NIPS.

Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, et al. 2022. “Emergent Abilities of Large Lan-
guage Models.” Trans. Mach. Learn. Res. 2022.

Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai-hsin Chi,
F. Xia, Quoc Le, and Denny Zhou. 2022. “Chain of Thought Prompting
Elicits Reasoning in Large Language Models.” ArXiv abs/2201.11903.

Yang, Sherry, Ofir Nachum, Yilun Du, Jason Wei, P. Abbeel, and Dale Schuur-
mans. 2023. “Foundation Models for Decision Making: Problems, Methods,
and Opportunities.” ArXiv abs/2303.04129.

Yao, Shunyu, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan
Cao, and Karthik Narasimhan. 2023. “Tree of Thoughts: Deliberate Prob-
lem Solving with Large Language Models.” ArXiv abs/2305.10601.

Appendix A: Coding session with Google Bard
Below is an example session with Google Bard, an chatbot based on Google’s
PaLM 2 LLM.

Prompt: Please pretend you are a top notch student of computer science at a
university and a great Python programmer. You’ve been given an assignment
to code up a perceptron and test it by using it to classify some data. We’ll use
Python for our assignment and we’re going to get an A+. The program should
implement the perceptron and a training loop. We’ll use Pandas to read the
data from a csv file whose name will be given as a command line argument. The
program should train the perceptron, then output classification accuracy as a
percent.

Bard: Sure, here is the code for the perceptron algorithm in Python:

import pandas as pd

class Perceptron:

14

https://www.nytimes.com/2023/05/16/technology/microsoft-ai-human-reasoning.html
https://www.nytimes.com/2023/05/16/technology/microsoft-ai-human-reasoning.html
https://youtu.be/GI4Tpi48DlA?t=1024
https://youtu.be/GI4Tpi48DlA?t=1024


def __init__(self, learning_rate=0.01, epochs=100):
self.learning_rate = learning_rate
self.epochs = epochs
self.weights = None
self.bias = None

def fit(self, X, y):
"""
Fits the perceptron to the given data.

Parameters
----------
X : pandas.DataFrame

The training data.
y : pandas.Series

The labels for the training data.

"""

self.weights = np.zeros(X.shape[1])
self.bias = 0

for epoch in range(self.epochs):
for i in range(len(X)):

x = X.iloc[i]
y_hat = self.predict(x)
error = y[i] - y_hat
self.weights = self.weights + self.learning_rate * error * x
self.bias = self.bias + self.learning_rate * error

def predict(self, x):
"""
Predicts the label for the given data.

Parameters
----------
x : pandas.DataFrame

The data to predict.

Returns
-------
int

The predicted label.

"""

15



activation = self.weights.dot(x) + self.bias
return 1 if activation >= 0 else 0

def main():

parser = argparse.ArgumentParser()
parser.add_argument('--data',

type=str, required=True,
help='The path to the CSV file containing the data.'

)
args = parser.parse_args()

df = pd.read_csv(args.data)
X = df.drop('label', axis=1)
y = df['label']

perceptron = Perceptron()
perceptron.fit(X, y)

correct = 0
for i in range(len(X)):

x = X.iloc[i]
y_hat = perceptron.predict(x)
if y_hat == y[i]:

correct += 1

accuracy = correct / len(X) * 100
print('Classification accuracy: {}%'.format(accuracy))

if __name__ == '__main__':
main()

This code can be used to classify data by reading it from a CSV file and then
training a perceptron on the data. The accuracy of the perceptron can then be
calculated and printed out.

Prompt: That’s a good start. How about we let the user pass in the number
of training epochs and learning rate on the command line?

Bard: Sure, we can do that. Here is the updated code:

import pandas as pd
import argparse

class Perceptron:

def __init__(self, learning_rate=0.01, epochs=100):

16



self.learning_rate = learning_rate
self.epochs = epochs
self.weights = None
self.bias = None

def fit(self, X, y):
"""
Fits the perceptron to the given data.

Parameters
----------
X : pandas.DataFrame

The training data.
y : pandas.Series

The labels for the training data.

"""

self.weights = np.zeros(X.shape[1])
self.bias = 0

for epoch in range(self.epochs):
for i in range(len(X)):

x = X.iloc[i]
y_hat = self.predict(x)
error = y[i] - y_hat
self.weights = self.weights + self.learning_rate * error * x
self.bias = self.bias + self.learning_rate * error

def predict(self, x):
"""
Predicts the label for the given data.

Parameters
----------
x : pandas.DataFrame

The data to predict.

Returns
-------
int

The predicted label.

"""

activation = self.weights.dot(x) + self.bias

17



return 1 if activation >= 0 else 0

def main():

parser = argparse.ArgumentParser()
parser.add_argument('--data',

type=str, required=True,
help='The path to the CSV file containing the data.'

)
parser.add_argument('--epochs',

type=int, default=100,
help='The number of training epochs.'

)
parser.add_argument('--learning_rate',

type=float, default=0.01,
help='The learning rate.'

)
args = parser.parse_args()

df = pd.read_csv(args.data)
X = df.drop('label', axis=1)
y = df['label']

perceptron = Perceptron(args.learning_rate, args.epochs)
perceptron.fit(X, y)

correct = 0
for i in range(len(X)):

x = X.iloc[i]
y_hat = perceptron.predict(x)
if y_hat == y[i]:

correct += 1

accuracy = correct / len(X) * 100
print('Classification accuracy: {}%'.format(accuracy))

if __name__ == '__main__':
main()

This code now allows the user to pass in the number of training epochs and
learning rate on the command line. For example, to train the perceptron for
100 epochs with a learning rate of 0.001, you would run the following command:

python perceptron.py --data data.csv --epochs 100 --learning_rate 0.001

Prompt: Oops, forgot to import numpy.

Bard: That’s okay, we can easily fix that. Here is the updated code with

18



NumPy imported:

import pandas as pd
import argparse
import numpy as np

class Perceptron:

def __init__(self, learning_rate=0.01, epochs=100):
self.learning_rate = learning_rate
self.epochs = epochs
self.weights = None
self.bias = None

def fit(self, X, y):
"""
Fits the perceptron to the given data.

Parameters
----------
X : pandas.DataFrame

The training data.
y : pandas.Series

The labels for the training data.

"""

self.weights = np.zeros(X.shape[1])
self.bias = 0

for epoch in range(self.epochs):
for i in range(len(X)):

x = X.iloc[i]
y_hat = self.predict(x)
error = y[i] - y_hat
self.weights = self.weights + self.learning_rate * error * x
self.bias = self.bias + self.learning_rate * error

def predict(self, x):
"""
Predicts the label for the given data.

Parameters
----------
x : pandas.DataFrame

The data to predict.

19



Returns
-------
int

The predicted label.

"""

activation = self.weights.dot(x) + self.bias
return 1 if activation >= 0 else 0

def main():

parser = argparse.ArgumentParser()
parser.add_argument('--data',

type=str, required=True,
help='The path to the CSV file containing the data.'

)
parser.add_argument('--epochs',

type=int, default=100,
help='The number of training epochs.'

)
parser.add_argument('--learning_rate',

type=float, default=0.01,
help='The learning rate.'

)
args = parser.parse_args()

df = pd.read_csv(args.data)
X = df.drop('label', axis=1)
y = df['label']

perceptron = Perceptron(args.learning_rate, args.epochs)
perceptron.fit(X, y)

correct = 0
for i in range(len(X)):

x = X.iloc[i]
y_hat = perceptron.predict(x)
if y_hat == y[i]:

correct += 1

accuracy = correct / len(X) * 100
print('Classification accuracy: {}%'.format(accuracy))

if __name__ == '__main__':

20



main()

This code now imports NumPy and uses it to create the weights and bias for
the perceptron. This should improve the accuracy of the perceptron.

Prompt: Nice work, Bard. That code works! I think we’re going to get an A
on our assignment!

Bard: I’m glad I could help! I think you’re right, that code should get you an
A on your assignment. Good luck!

Program output

python scripts/bard_perceptron.py \
--learning_rate 0.1 \
--epochs 100 \
--data data/part3/ionosphere.csv

Classification accuracy: 92.02279202279202%

21


	Large Language Models
	Introduction
	How do LLMs work?
	What is a language model?
	Attention
	Self-supervised pretraining and transfer learning
	Stages of training
	Returns of scale

	Capabilities
	Augmented models
	Prompt engineering
	Sparks of AGI
	Limitations

	Applications for good and ill
	Conclusion
	References
	Appendix A: Coding session with Google Bard
	Program output



